Disruption of microfilaments in growth cones following depolarization and calcium influx.

نویسندگان

  • M D Neely
  • M Gesemann
چکیده

Depolarization of leech neurons growing on extracellular matrix extract (ECM) leads to cessation of neurite outgrowth, rounding up of the peripheral regions of the growth cone, loss of filopodia, and neurite retraction. These responses depend on the influx of calcium (Neely, 1993). The aim of the present experiments was to analyze how the cytoskeleton becomes reorganized as growth cones change their morphology. Immunocytochemistry revealed a loss of microfilaments in the tips of neurites growing on ECM after depolarization. Leech neurons cultured on a different substrate, the plant lectin concanavalin A (ConA), continue to grow during and after depolarization (Grumbacher-Reinert and Nicholls, 1992; Neely, 1993). As expected, we did not observe any change in the distribution of microfilaments after depolarization on ConA. Since there is evidence that this lack of response is due to a reduced calcium influx during depolarization of neurons on ConA (Ross et al., 1988), the effect of the calcium ionophore A23187 on the outgrowth of these cells was analyzed. In the absence of depolarization, this ionophore caused cessation of growth cone motility and a loss of microfilaments, while microtubules were not affected. Cytochalasin D, a microfilament-disrupting agent, induced changes in growth cone morphology and neurite retraction similar to those observed after depolarization and calcium influx. Application of phalloidin, a drug that stabilizes microfilaments, inhibited depolarization-induced retraction of neurites on ECM. By contrast, stabilization of microtubules with taxol did not prevent depolarization from inducing changes in growth cone morphology and neurite growth. These experiments show that changes in growth cone morphology and motility of leech neurons induced by depolarization and calcium influx are accompanied by a dramatic change in the organization of microfilaments, but not microtubules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium influx alters actin bundle dynamics and retrograde flow in Helisoma growth cones.

The ability of calcium (Ca(2+)) to effect changes in growth cone motility requires remodeling of the actin cytoskeleton. To understand the mechanisms involved, we evaluated the effect of elevated intracellular calcium ([Ca(2+)](i)) on actin bundle dynamics, organization, and retrograde flow in the large growth cones of identified Helisoma neurons. Depolarization with 15 mM KCl (high K(+)) for 3...

متن کامل

Role of substrate and calcium in neurite retraction of leech neurons following depolarization.

The aim of these experiments was to analyze how depolarization influences neurite outgrowth in leech neurons and what role the substrate and Ca2+ play in this response. Neurons in culture were exposed to 60 mM extracellular K+ for 30 min, which induced retraction of a subset of neurites growing on extracellular matrix substrate (ECM), a response comparable to that observed after electrical stim...

متن کامل

Evidence that calcium may control neurite outgrowth by regulating the stability of actin filaments

We investigated the effects of calcium removal and calcium ionophores on the behavior and ultrastructure of cultured chick dorsal root ganglia (DRG) neurons to identify possible mechanisms by which calcium might regulate neurite outgrowth. Both calcium removal and the addition of calcium ionophores A23187 or ionomycin blocked outgrowth in previously elongating neurites, although in the case of ...

متن کامل

CRP1, a protein localized in filopodia of growth cones, is involved in dendritic growth.

The cysteine-rich protein (CRP) family is a subgroup of LIM domain proteins. CRP1, which cross-links actin filaments to make actin bundles, is the only CRP family member expressed in the CNS with little known about its function in nerve cells. Here, we report that CRP1 colocalizes with actin in the filopodia of growth cones in cultured rat hippocampal neurons. Knockdown of CRP1 expression by sh...

متن کامل

Tetraethylammonium contains an impurity which alkalizes cytoplasm and reduce calcium buffering in neurons.

Commercial tetraethylammonium chloride contains about 5% of the impurity triethylamine. External triethylamine raises cytoplasmic pH, which reduces the intracellular calcium concentration transient following calcium influx during membrane depolarization. The calcium influx is unaffected, so the cell's ability to buffer calcium transients is reduced. Purified tetraethylammonium does not have the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 12  شماره 

صفحات  -

تاریخ انتشار 1994